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1.  Introduction 
 

In the whole paper, 𝐺  is a simple graph without 

directed and multiple edges and without loops, the vertex 

and edge-sets of which are represented by 𝑉(𝐺) and 𝐸(𝐺), 

respectively. The vertices in 𝐺 are connected by an edge if 

there exists an edge 𝑢𝑣 ∈ 𝐸(𝐺) connecting the vertices 𝑢 

and 𝑣  in 𝐺  such that 𝑢, 𝑣 ∈ 𝑉(𝐺). For any 𝑢 ∈ 𝑉(𝐺), 𝑑𝑢 

represents the number of edges incident to 𝑢, called the 

degree of the vertex 𝑢  in 𝐺 . In chemical graphs, the 

vertices of the graph correspond to the atoms of molecules 

while the edges represent chemical bonds [1]. Numbers 

encoding certain structural features of organic molecules 

and derived from the corresponding molecular graph, are 

called graph invariants or more commonly topological 

indices. The connectivity index introduced in 1975 by 

Milan Randić  [2], has shown this index to reflect 

molecular branching. Randić index (Randić molecular 

connectivity index) was defined as  𝜒(𝐺) =

∑
1

√𝑑𝑢𝑑𝑣
𝑢𝑣∈𝐸(𝐺) .   

     In 2009, Zhou and Trinajstić [3] proposed another 

connectivity index, named the Sum-connectivity 

index  𝑋(𝐺) = ∑
1

√𝑑𝑢+𝑑𝑣
𝑢𝑣∈𝐸(𝐺) . The Harmonic index of 

graph 𝐺  is defined  [4, 5]  as 𝐻(𝐺) = ∑
2

𝑑𝑢+𝑑𝑣
.𝑢𝑣∈𝐸(𝐺)  The 

augmented Zagreb index ( 𝐴𝑍𝐼 index for short) of 𝐺 

proposed by Furtula et al.  [6]  is defined as  AZI(G) =

∑ (
𝑑𝑢𝑑𝑣

𝑑𝑢+𝑑𝑣−2
)

3

𝑢𝑣∈𝐸(𝐺) . Recently, Fath-Tabar[7]put forward 

the first and the second Zagreb polynomials of the graph 

𝐺, defined respectively as ZG1(G, x) = ∑ 𝑥𝑑𝑢+𝑑𝑣
𝑢𝑣∈𝐸(𝐺)  

and ZG2(G, x) = ∑ 𝑥𝑑𝑢𝑑𝑣
𝑢𝑣∈𝐸(𝐺) ,  where 𝑥  is a dummy 

variable. The aim of this paper is to compute some 

topological indices of linear [n]-phenylenic, lattice 

of 𝐶4𝐶6𝐶8[𝑝, 𝑞], 𝑇𝑈𝐶4𝐶6𝐶8[𝑝, 𝑞]  nanotube and 

𝐶4𝐶6𝐶8[𝑝, 𝑞]  nanotori. In recent years, there has been 

considerable interest in general problems of determining 

topological indices [8-14].  

 

2.  Main results and discussion 
 

The aim of this section, at first, is to compute some 

topological indices of the molecular graph of linear [n]-

phenylenic as depicted in Fig. 1. 

 

 

 

Fig. 1. The molecular graph of a linear [n]-phenylenic. 

 

 

Remark 2.1 It is easy to see that T = T[n] has 

6𝑛 vertices and 8n − 2 edges. We partition the edges of 

T into three subsets  𝐸1(T) , 𝐸2(T) and 𝐸3(T) . Table 1 

shows the number of three types of edges. 

 

 
Table 1. The number of three types of edges of the graph T 

 

(𝑑𝑢 , 𝑑𝑣) where 𝑢𝑣 ∈ 𝐸(𝑇) Total Number of Edges 

𝐸1 = [2,2] 6 

𝐸2 = [2,3] 4𝑛 − 4 

𝐸3 = [3,3] 4𝑛 − 4 

 

    From this table, we give an explicit computing 

formula for some indices of a linear [n]-phenylenic, as 

shown in above graph. 

 

Theorem 2.2 Consider the graph T of a linear [n]-

phenylenic. Then 
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(i) 𝜒(𝑇) = ∑
1

√𝑑𝑢𝑑𝑣
=

|𝐸1|

√4𝑢𝑣∈𝐸(𝑇) +
|𝐸2|

√6
+

|𝐸3|

√9
=

6

2
+

4𝑛−4

√6
+

4𝑛−4

3
= (

4+2√6

3
) 𝑛 +

5−2√6

3
.         

(ii) 𝑋(𝑇) = ∑
1

√𝑑𝑢+𝑑𝑣
=

|𝐸1|

√4𝑢𝑣∈𝐸(𝑇) +
|𝐸2|

√5
+

|𝐸3|

√6
=

6

2
+

4𝑛−4

√5
+

4𝑛−4

√6
= 4 (

√5

5
+

√6

6
) 𝑛 + (3 −

4√5

5
−

2√6

3
).         

(iii) 𝐻(𝑇) = ∑
2

𝑑𝑢+𝑑𝑣
=

2|𝐸1|

4𝑢𝑣∈𝐸(𝑇) +
2|𝐸2|

5
+

2|𝐸3|

6
=

2(6)

4
+

2(4𝑛−4)

5
+

2(4𝑛−4)

6
=

44

15
𝑛 +

1

15
. 

(iv) 𝐴𝑍𝐼(𝑇) = ∑ (
𝑑𝑢𝑑𝑣

𝑑𝑢+𝑑𝑣−2
)

3

𝑢𝑣∈𝐸(𝑇) = |𝐸1| (
4

2
)

3
+

|𝐸2| (
6

3
)

3
+ |𝐸3| (

9

4
)

3
=  (6) (

4

2
)

3

+  (4𝑛 − 4) 

(
6

3
)

3

+ (4𝑛 − 4) (
9

4
)

3

=
1241

16
𝑛 −

473

16
. 

In continue of this section, we see the following 

figures. 

 

 

 
 

Fig. 2. The 2-D graph lattice of 𝐶4𝐶6𝐶8[4,5] 
 

 

 
 

Fig. 3. The 2-D graph lattice 𝑇𝑈𝐶4𝐶6𝐶8[4,5] nanotube 

Remark 2.3 [15]  We now consider the molecular 

graph 𝐺 = 𝐶4𝐶6𝐶8[𝑝, 𝑞] , Fig. 2. It is easy to see 

that |𝑉(𝐺)| =  6𝑝𝑞 and |𝐸(𝐺)| =  9𝑝𝑞 − 2𝑞 − 𝑝.  We 

partition the edges of 𝐺into three subsets 𝐸1(G), 𝐸2(G) and 

𝐸3(G). The number of three types of edges is shown in 

Table 2. 

 
Table 2. The number of three types of edges of the graph 𝐺 

 
(𝑑𝑢 , 𝑑𝑣) where 𝑢𝑣 ∈ 𝐸(𝐺) Total Number of Edges 

𝐸1 = [2,2] 2q + 4 

𝐸2 = [2,3] 4p + 4q − 8 

𝐸3 = [3,3] 9pq − 8q − 5p + 4 

 

From this table, we give an explicit computing of 

some indices of 𝐺 (Fig. 2). 

 

Theorem 2.4 Consider the graph 𝐺  of lattice  

𝐶4𝐶6𝐶8[𝑝, 𝑞]. Then 

 

(i) 𝜒(𝐺) = ∑
1

√𝑑𝑢𝑑𝑣
=

|𝐸1|

√4𝑢𝑣∈𝐸(𝐺) +
|𝐸2|

√6
+

|𝐸3|

√9
=

      
2q+4

2
+

4p+4q−8

√6
+

9pq−8q−5p+4

3
=

3𝑝𝑞 +       (
2√6−5

3
) (𝑝 + 𝑞) +

10−4√6

3
.         

(ii) 𝑋(𝐺) = ∑
1

√𝑑𝑢+𝑑𝑣
=

|𝐸1|

√4𝑢𝑣∈𝐸(𝐺) +
|𝐸2|

√5
+

|𝐸3|

√6
=

2q+4

2
+

4p+4q−8

√5
+

9pq−8q−5p+4

√6
=

3√6

2
𝑝𝑞 +

(
4√5

5
−

5√6

6
) 𝑝 + (1 +

4√5

5
−

4√6

3
) 𝑞 + (2 +

2√6

3
−

8√5

5
).         

(iii) 𝐻(𝐺) = ∑
2

𝑑𝑢+𝑑𝑣
=

2|𝐸1|

4𝑢𝑣∈𝐸(𝐺) +
2|𝐸2|

5
+

2|𝐸3|

6
=

2(2q+4)

4
+

2(4p+4q−8)

5
+

2(9pq−8q−5p+4)

6
= 3𝑝𝑞 −

1

15
(𝑝 + 𝑞) +

2

15
. 

(iv) AZI(G) = ∑ (
𝑑𝑢𝑑𝑣

𝑑𝑢+𝑑𝑣−2
)

3

𝑢𝑣∈𝐸(𝐺) = |𝐸1| (
4

2
)

3
+

|𝐸2| (
6

3
)

3
+ |𝐸3| (

9

4
)

3
= (2q + 4) (

4

2
)

3

+

 (4p + 4q − 8) (
6

3
)

3

+ (9pq − 8q − 5p + 4) (
9

4
)

3

=

6561

64
𝑝𝑞 −

1597

64
𝑝 −

345

8
𝑞 +

217

16
 . 

Remark 2.5 We now consider the molecular graph 

𝐾 = 𝑇𝑈𝐶4𝐶6𝐶8[𝑝, 𝑞] , Fig. 3.  It is easy to see that 

|𝑉(𝐾)| =  6𝑝𝑞 and |𝐸(𝐾)| =  9𝑝𝑞 − 𝑝 . We partition the 

edges of nanotube 𝐾 into two subsets 𝐸1(K) , 𝐸2(K) and 

compute the total number of edges for the 2-dimensional 

of graph 𝐾 (Table 3).  

 
Table 3. The number of two types of edges of the graph 𝐾 

(𝑑𝑢 , 𝑑𝑣) where 𝑢𝑣 ∈ 𝐸(𝐾) Total Number of Edges 

𝐸1 = [2,3] 4𝑝 

𝐸2 = [3,3] 9𝑝𝑞 − 5𝑝 
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In the following theorem we compute some indices 

of 𝐾 (Fig. 3).  

Theorem 2.6 Consider the graph 𝐾  of 

𝑇𝑈𝐶4𝐶6𝐶8[𝑝, 𝑞] nanotube. Then 

(i) 𝜒(𝐾) = ∑
1

√𝑑𝑢𝑑𝑣
=𝑢𝑣∈𝐸(𝐾)

|𝐸1|

√6
+

|𝐸2|

√9
=

4p

√6
+

9𝑝𝑞−5𝑝

√9
=

3𝑝𝑞 + (
2√6−5

3
) 𝑝.         

(ii) 𝑋(𝐾) = ∑
1

√𝑑𝑢+𝑑𝑣
=𝑢𝑣∈𝐸(𝐾)

|𝐸1|

√5
+

|𝐸2|

√6
=

4p

√5
+

9𝑝𝑞−5𝑝

√6
=

3√6

2
𝑝𝑞 + (

4√5

5
−

5√6

6
) 𝑝.         

(iii) 𝐻(𝐾) = ∑
2

𝑑𝑢+𝑑𝑣
=𝑢𝑣∈𝐸(𝐾)

2|𝐸1|

5
+

2|𝐸2|

6
=

2(4p)

5
+

2(9𝑝𝑞−5𝑝)

6
= 3𝑝𝑞 −

1

15
𝑝. 

(iv) AZI(K) = ∑ (
𝑑𝑢𝑑𝑣

𝑑𝑢+𝑑𝑣−2
)

3

𝑢𝑣∈𝐸(𝐾) = |𝐸1| (
6

3
)

3
+

|𝐸2| (
9

4
)

3
= (4p) (

6

3
)

3

+ (9𝑝𝑞 − 5𝑝) (
9

4
)

3

=

6561

64
𝑝𝑞 −

1597

64
. 

In the end of this paper, we can see the molecular 

graph of 𝐿 = 𝐶4𝐶6𝐶8[𝑝, 𝑞] nanotorus in the Fig. 4. It is 

easily seen that |E(L)|=9pq. 

 

 

Fig. 4. The 2-D graph lattice of 𝐶4𝐶6𝐶8[4,5] nanotori. 

 

 

Lemma 2.7 For an arbitrary graph G, 

 

(a) 𝜒(𝐺) =
1

𝑘
|𝐸(𝐺)| if and only if 𝐺  be a k-regular 

graph. 

(b) 𝑋(𝐺) =
1

√2𝑘
|𝐸(𝐺)| if and only if 𝐺  be a k-regular 

graph. 

(c) 𝐻(𝐺) =
1

𝑘
 |𝐸(𝐺)| if and only if 𝐺  be a k-regular 

graph. 

 

Proof. It is easy to check according to Fig. 4. 

Note 2.8 By using Lemma 2.7, consider the Fig. 4. 

One can see that the graph is 3-regular, so𝜒(𝐿) = 3𝑝𝑞,

𝑋(𝐿) =
3√6

2
𝑝𝑞, 𝐻(𝐿) = 3𝑝𝑞.         

Theorem 2.9 The first and second Zagreb 

polynomials of above graphs are equal to: 

(i) ZG1(G, x) = (9pq − 8q −  5p +  4)x6 +

(4p + 4q − 8)x5 + (2q + 4)x4, 

(ii) ZG2(G, x)  = (9pq − 8q −  5p +  4)x9 + (4p +

4q − 8)x6 + (2q + 4)x4, 

(iii) ZG1(K, x)  = (9pq − 5p)x6 + (4p)x5, 

(iv) ZG2(K, x)  = (9pq − 5p)x9 + (4p)x6, 

(v) ZG1(L, x)  = (9pq)x6, 

(vi) ZG2(L, x) = (9pq)x9. 
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